Laboratori Ingegneria Ferrara s.r.l.

sede legale: via Palestro 25 - 44121 Ferrara (FE) - Italy sede operativa: via Ascari 6 - 44019 Gualdo di Voghiera (FE) - Italy

P.IVA e C.F: 01904060389

ufficio 0532.1673129 - fax +39.0532.473486 - mobile +39.320.6651813

web: www.lifelab.it - email: info@lifelab.it

Committente

MEZZADRINGEGNERIA - ING. CHIARA FORESTI

Oggetto

INDAGINI SPECIALISTICHE SULLA COPERTURA LIGNEA DELLA CHIESA DI RAVALLE (FE)

Titolo

RAPPORTO DI INDAGINE

Emesso: Approvato:

dr. Paolo Mezzaro Ing. Sergio Tralli

940 - 2017	Doc3 – Rapporto conclusivo	00	Prima emissione	08 febbraio 2017	comm940-17-doc3-rev00-RAVALLE-COPERTURA
Commessa	Codice - Documento	Revisione	Motivazione	Data	Nome file

1.	PREMESSA	. 3
2.	OGGETTO E FINALITÀ DELLE ATTIVITÀ SVOLTE	. 3
3.	CONSIDERAZIONI SUI RISULTATI DELLE INDAGINI	. 4
4.	PARAMETRI FISICI E MECCANICI DEI MATERIALI INDAGATI	. 6
5	FLENCO ALLEGATI	11

1. Premessa

Su incarico della Committenza, *Mezzadringegneria*, la scrivente società ha eseguito una campagna di indagini specialistiche sulle strutture lignee di copertura della chiesa parrocchiale di Ravalle (Fe).

vista aerea con identificazione dell'edificio oggetto di indagine

2. Oggetto e finalità delle attività svolte

La campagna di indagine ha avuto come finalità l'ispezione generale delle strutture lignee di copertura al fine di valutare complessivamente l'eventuale stato di degrado, consentire il riconoscimento tipologico della classe di resistenza degli elementi lignei significativi ed individuare eventuali situazioni particolari di degrado; l'assegnazione alla classe di resistenza è stata effettuata secondo le metodiche espresse nella norma UNI 1119:2004 che stabilisce obiettivi, procedure e requisiti per la diagnosi dello stato di conservazione e la stima della resistenza e della rigidezza di elementi lignei in opera nelle strutture portanti di edifici compresi nell'ambito dei beni culturali, attraverso l'esecuzione di ispezioni in situ e l'impiego di tecniche e metodologie di prova non distruttive eseguite a campione sugli elementi lignei.

L'ispezione è stata condotta sull'intera struttura di copertura del fabbricato.

rilievo del degrado su travetto di orditura terziaria

3. Considerazioni sui risultati delle indagini

Le indagini hanno rivelato la presenza delle seguenti condizioni di degrado e/o di precarietà della struttura di copertura:

- degrado delle strutture lignee di copertura complessivamente contenuto, alcune situazioni di parziale degrado localizzate su travetti dell'orditura terziaria
- una trave di orditura secondaria con lesione da flessione, sostenuta in mezzeria da un puntello ligneo poggiante sulla orditura di sostegno del controsoffitto
- alcune posizioni caratterizzate da relativa precarietà degli appoggi, realizzati con utilizzo di spessori e zeppe n legno in occasione di precedenti lavori alla copertura

La restituzione dei risultati delle ispezioni e delle indagini eseguite è riportata in Allegato 1 in forma grafica, con indicazione in pianta dei punti in cui è stato riscontrato degrado o anomalie.

degrado superficiale da carie in appoggio dei travetti

lesione da flessione su trave, sostenuta in mezzeria da puntello ligneo

appoggi di elementi dell'orditura secondaria e terziaria caratterizzati da precarietà

4. Parametri fisici e meccanici dei materiali indagati

Un utile supporto alle verifiche di calcolo degli elementi lignei indagati è fornito dalla stessa norma UNI 11119/04 dove è allegata la seguente tabella, che a partire dalle categorie di resistenza ottenute dalle indagini in situ su elementi lignei indica i valori consoni di tensioni massime per l'applicazione delle verifiche con il metodo delle tensioni ammissibili.

I valori sono riferiti all'umidità ottimale del 12%;

Tensioni massime per l'applicazione del metodo delle tensioni ammissibili e moduli medi di elasticità a flessione, per le categorie in opera delle principali specie legnose, applicabili per umidità del legno = 12%

			-	Tensioni mas	ssime (N/mm²)		
Specie	Categoria in opera	compre	essione	flessione statica	trazione parallela alla	taglio (parallelo	modulo di elasticità a
	opera	parallela alla fibratura	perpendi- colare alla fibratura	Statuca	fibratura 1)	alla fibratura)	flessione
Abete bianco	1	11	2,0	11,5	11	0,9	13 000
(Ables alba Mill.)	11	9	2,0	10	9	0,8	12 000
	III	7	2,0	7,5	6	0,7	11 000
Abete rosso	1	10	2,0	11	11	1,0	12 500
(Picea ables Karst.)	II	8	2,0	9	9	0,9	11 500
	III	6	2,0	7	6	0,8	10 500
Larice	I	12	2,5	13	12	1,1	15 500
(Larix spp.)	II	10	2,2	11	9,5	1,0	14 500
300 400 30 MASSO	Ш	7,5	2,0	8,5	7	0,9	13 500
Pini	1	11	2,0	12	11	1,0	13 000
(Pinus spp.)	11	9	2,0	10	9	0,9	12 000
	111	7	2,0	8	6	0,8	11 000
Castagno	1	11	2,0	12	11	0,8	10 000
(Castanea sativa	Ш	9	2,0	10	9	0,7	9 000
Mill.)	Ш	7	2,0	8	6	0,6	8 000
Pioppo	1	10	1,5	10,5	9	0,6	9 000
(Populus spp.)	11	8	1,5	8,5	7	0,5	8 000
	III	6	1,5	6,5	4,5	0,4	7 000
Quercia	1	12	3,0	13	12	1,2	13 500
(Querous spp.)	II	10	2,5	11	10	1,0	12 500
	III	7,5	2,2	8,5	7	0,9	11 500

Immagine: tabella estratta dalla UNI11119/04 – parametri meccanici e fisici dei legnami strutturali...

Con il medesimo procedimento è possibile utilizzare le conclusioni delle attività di indagine ispettiva in sito, regolate dalle procedure operative proprie della UNI 11119/04, per ricavare i parametri meccanici dalla tabella allegata alla norma UNI 11035-2/2003 "Regole per la classificazione a vista secondo la resistenza e i valori caratteristici per tipi di legname strutturale italiani". I parametri meccanici forniti sono utili per l'impostazione di verifiche numeriche di calcolo con il metodo degli stati limite.

La norma riguarda propriamente segati ad uso strutturale di attuale produzione, la scelta del progettista incaricato dovrà essere direzionata all'applicazione dei coefficienti parziali per le resistenze in accordo alle normative vigenti ed al percorso progettuale intrapreso.

Valori caratteristici per i tipi di legname considerati nella presente norma

Propreta		At	ete / Nor	đ	Abet	e / Centro	Sid	ı	arice / No	rd	Douglas	in/itala	Altre	Contere	Italia	Castagno/ Italia	Querce caductogle/ tala	Proppose Ontano/ Italia	Altre Latfogle Italia
		St	52	SS	S1	S2	S3	S1	S2	S3	SI	S2/S3	S1	52	53	S	S	S	S
Researce (5-percentile), MPa	Lo	29	23	17	32	28	25	42	32	25	40	23	33	28	72	28	42	26	27
Trazione parallela alla fibratura (5-percentile), MPa	£13	17	14	10	19	17	13	25	19	18	24	14	20	16	13	17	25	18	18
Trazione perpendicolare alla fibratura (5-percentile), MPa	£10,1	0,4	0,4	0,4	0,3	0,3	0.3	0,6	0,6	C6	0,4	0,4	ць	0,5	Д5	0,5	0.5	0,4	0,6
Dompressione perallela alla floratura (5-percentile), MPs	€ax	23	20	16	24	22	20	27	24	22	28	20	24	22	20	22	27	22	22
Compressione perpendi- colare alla fioratura (5-percentie): MPa	€30.4	2,9	2,9	29	21	2,1	2.1	4.0	4,0	4.0	2,5	2,5	40	4,0	40	3,8	5.7	3,2	3,9
Taglio (5-percentile), MPs	4	3,0	2,5	1,9	3,2	2,9	23	4.0	3,2	2.7	4.0	3,4	3,3	2.7	2.4	2,0	40	2,7	2,0
Modulo di elastota perallelo alla fibratura (medio), MPa	Enem	12 000	10 500	9 500	11 000	18 000	9 500	13 000	12 000	11 500	14 000	12 500	12 300	11 400	10 500	11 000	12 000	8 000	11 500
Modulo di elasticità parallelo alla fibratura (5-percentile), MPa	£ _{ia}	8 000	7 000	6 400	7 400	6700	6 400	8700	5 000	7.700	9 400	5 400	8 200	7 800	7 000	8 000	10 100	6700	8 400
Modulo di elasticità perpen- dicolare alla fibratura (medio), MPa	E _{K,max}	400	350	323	370	330	320	430	400	350	470	420	410	380	350	730	800	530	770
Modulo di taglio (medio), MPa	Guesa	780	880	590	690	630	500	810	750	720	880	780	770	710	860	950	750	500	720
Massa volumica (5-percentile), kg/m³	p,	360	390	390	280	280	260	560	560	550	400	420	530	530	530	485	760	420	515
Massa volumica (media), kg/m ²	ρ_{man}	415	415	415	305	305	305	500	600	600	435	455	575	575	575	550	825	460	560

Immagine: tabella estratta dalla UNI11035/2 – parametri meccanici e fisici dei legnami strutturali.

Il legno conforme alle classi G45 e C50 può non essere immediatamente disp

Volendo infine assegnare alle strutture indagate in cantiere una classificazione conforme a quella utilizzata per i legnami di nuova produzione nei procedimenti di nuova costruzione, è possibile utilizzare la tabella riportata nella UNI EN 338/2004 e richiamata dal D.M. 14/01/2008 norme Tecniche per le Costruzioni, utilizzando come fattore di ingresso il parametro meccanico selezionato precedentemente nella tabella dei valori caratteristici della norma UNI 11035/2 (tipicamente la flessione per le travi inflesse e la trazione parallela alla fibratura per le catene delle capriate). La UNI EN 338/2004 "Legno strutturale - Classi di resistenza" stabilisce un sistema di classi di resistenza per uso generale nei codici strutturali, fornendo inoltre valori caratteristici delle proprietà di resistenza, di rigidezza e della massa volumica per ciascuna classe, e le regole per l'assegnazione dei tipi di legno (cioè le combinazioni di specie, provenienza e categoria) alle classi di resistenza; questa norma si applica a tutti i legnami di conifere e di latifoglie per uso strutturale.

Va precisato che il procedimento adottato per l'indagine in sito sulle strutture lignee, spesso inserite in contesti storico monumentali caratterizzati da peculiari metodi costruttivi, non può essere considerato sostitutivo della procedura di controllo sistematico per la classificazione del legname di nuova immissione sul mercato delle costruzioni. Il confronto con le classi di resistenza indicate dalla normativa UNI EN 338 deve pertanto essere considerato semplicemente come un indirizzo di inquadramento e chiarimento; si consiglia di utilizzare nei calcoli le informazioni riportate nelle precedenti tabelle della UNI11119 e della UNI 11035/2.

						Plo	nco e con	ifere	. 11			2 11				Latt	ogle		
		C14	C15	C18	C25	C22	C24	C27	C30	C35	C40	C45	050	D30	D35	D40	050	DSD	D70
Propostà di resistenza (in Nimm²):																			
Pleasone Trazione parallela Trazione perpendicolare Compressione parallela Compressione parpendicolare Taglio	63 63 63 63 63 63 64	14 8 0,4 16 2,0 1,7	16 10 0,5 17 2,2 1,8	18 11 0,5 18 2,2 2,0	20 12 0,5 19 2,3 2,2	22 13 0,5 20 2,4 2,4	24 14 0,5 21 2,5 2,5	27 18 0,5 22 2,5 2,8	30 18 0,6 23 2,7 3,0	35 21 0.6 25 2,8 3,4	40 24 0,6 28 2,9 3,8	45 27 0,6 27 3,1 3,8	50 30 0.5 29 3,2 3,8	30 18 0,5 23 8,0 3,0	35 21 0.6 25 8.4 3.4	40 24 0.6 26 8,8 3,8	50 30 0.5 29 9.7 4.6	60 38 0,6 32 10,5 5,3	70 42 0,5 34 13,5 6,0
Proprietà di rigidezza (n. Wilmin)																•			
Moduro di elesticità medio passilera Moduro di elesticità passilero al 5% Moduro di elesticità medio perpendicolare Moduro di taglio medio	E _{1,000} E _{1,00} E _{00,000} Green	7 4,7 0,23 0,44	8 5,4 0,27 0,5	9 5,0 0,30 0,56	9,5 6,4 0,32 0,59	10 5,7 0,33 0,63	11 7,4 0,37 0,69	11,5 7,7 0,38 0,72	12 8,0 0,40 0,75	13 8,7 0,43 0,81	14 9,4 0,47 0,88	15 10,0 0,50 0,94	16 10,7 0,53 1,00	10 8,0 0,64 0,60	10 8,7 0,89 0,65	11 9.4 0.75 0.70	14 11,8 0,93 0,88	17 14,3 1,13 1,08	20 16,8 1,33 1,25
Massa volumica (in kg/m²)																			
Massa volumica Massa volumica media	P _k P _{rem}	290 350	310 370	320 380	330 390	340 410	350 420	370 450	380 450	400 480	420 500	440 520	460 550	530 840	550 670	590 700	650 780	700 840	1 080

Immagine: tabella estratta dalla UNI EN 338 - Classi di resistenza

940-17-doc3-rev00-RAVALLE-COPERTURA Pag. 8 di 11

UNI 11035:2003

Valori caratteristici per i tipi di legname considerati nella presente norma

Altre Latfoglie/ Italia 8 8 400 30 770 720 560 27 22 w Pioppo a Ontano/ 8 000 6 700 530 500 0,4 32 27 420 480 92 23 S 8 Querce caducifogle / Italia 10 100 40 0.8 800 200 780 825 Ş 13 27 5.7 to Castagno/ Italia 11 000 8 000 2,0 730 0.5 950 465 550 S 28 17 22 909 7 000 380 50 0,5 4.0 24 680 530 83 N 8 Altre Conifere / Italia 9 11 400 7 600 710 4.0 9 9,0 27 380 530 52 28 22 12 300 8 200 410 0,5 40 770 530 575 33 8 55 23 Douglasia / Italia 12 500 52753 8 400 28 43 8 8 28 53 # 0,4 23 14 000 9 400 43 880 8 8 무 24 0.4 28 55 200 7 700 9 0,8 40 38 8 3 27 55 88 8 8 Larice / Nord 12 000 8 000 3,2 90 250 9,0 0.4 550 800 82 32 cn cn 24 13 000 8 700 9,0 4.0 8 88 걸 25 550 50 27 9 500 6 400 3 3 0,3 320 580 280 308 N 8 2,1 Abete / Centro Sud 10 000 8700 0,3 330 630 305 82 280 28 1 22 2.1 000 7 400 370 0,3 890 308 50 32 0 24 Ni Ni 280 -9 500 6 400 320 590 B 0,4 29 380 9 00 Abete / Nord 10 500 7 000 350 88 22 4 0,4 2.9 380 23 20 12 000 8 000 415 400 20 1 0,4 23 2,9 380 53 5 Egumen 190× 8'D5'9 A.08 N.W. fax 50.k 3 ď NP. Compressione parallela alla floratura (5-percentile), MPa alla floratura (5-percentile), Modulo di elasticità perpen Massa volumioa (media), kg/m³ Flessione (5-percentile), frazione perpendicolare Compressione perpendi-Modulo di taglio (medio). Proprieta Trazione parallela alla floratura (5-percentile), parallelo alla fibratura parallelo alla fibratura dicolare alla fibratura Taglio (5-percentile). (Spercentile), kg/m³ colare alla fioratura Modulo di elasticità Modulo di elasticità (5-percentile), MPa (S-percentile), MPa Massa volumica (medio), MPa (medio), MPa MPa MPa MPa

Classi di resistenza - Valori caratteristici

Proprietà di resisterza (in Nirmit). Personne di controlle de la controlle de							Piopi	Pioppo e confere	are								Lafe	Latifoglie		
netà di resistenza (in Nimm²) sone one paralleia fox fox fox fox fox fox fox fo			014	018	C18	C20	C22	024	C27	030	035	040	C45	CSO	030	D35	040	050	090	D70
tone parallets f to x	ropnetà di resistenza (in Nimm²)																			
one parallela fore perpendicolare fox, 0,4 0,5 0,5 0,5 pressione parallela fox, 0,4 0,5 0,5 0,5 pressione parallela fox, 0,4 0,5 1,7 18 pressione parallela fox, 0,4 1,7 1,8 2,0 0 oretà di rigidazza (in kN/mm²) $\frac{f_{\rm DAM}}{f_{\rm AM}} = \frac{7}{1,7} = \frac{1}{1,8} = \frac{2}{2,0}$ netà di rigidazza (in kN/mm²) $\frac{f_{\rm DAM}}{f_{\rm DAM}} = \frac{7}{f_{\rm DAM}} = \frac{8}{4,7} = \frac{9}{5,0}$ allo di elasticità medio perpendicolare $\frac{f_{\rm DAM}}{G_{\rm DAM}} = \frac{7}{6,4} = \frac{9}{0,5} = \frac{9}{0,50}$ allo di laggio medio perpendicolare $\frac{f_{\rm DAM}}{G_{\rm DAM}} = \frac{7}{0,44} = \frac{8}{0,5} = \frac{9}{0,50}$ avolumica (in kg/m³). I valori forniti sopra per la resistenza a trazione, la resistenza a compressio utilizzando le equazioni fornite nell'appendice A. Le proprietà nel prospetto sono compatibili con un legno la cui umidità sia	essone	/mx	14	16	18	8	22	24	27	30	35	40	\$	20	30	R	40	20	8	22
pressione perpendicolare $f_{\rm co,k}$ 0,4 0,5 0,5 pressione parallela $f_{\rm co,k}$ 16 17 18 pressione perpendicolare $f_{\rm co,k}$ 2,0 2,2 2,2 0 1,7 1,8 2,0 netà di rigidazza (in kN/mm²) $f_{\rm co,k}$ 1,7 1,8 2,0 and delasticità medio perpendicolare $f_{\rm co,k}$ 4,7 5,4 6,0 allo di elasticità medio perpendicolare $f_{\rm co,k}$ 0,23 0,27 0,30 allo di taglio medio perpendicolare $f_{\rm co,k}$ 0,28 0,27 0,30 as volumica (in kg/m³) $\rho_{\rm k}$ 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,8 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,8 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,8 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,8 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,8 290 310 320 as volumica media $\rho_{\rm co,k}$ 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	azione parallela	fox	00	9	=	12	9	4	19	40	21	24	27	30	18	2	24	30	æ	42
pressione parallela $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 16 17 18 pressione parallela $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 1,7 1,8 2,0 netà di rigidazza (in kN/mm²) $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 2,0 2,2 2,2 0 or de asticità medio parallela $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 4,7 5,4 6,0 allo di elasticità medio perpendicolare $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 0,23 0,27 0,30 allo di taglio medio $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 2,0 0,44 0,5 0,55 as volumica (in kg/m³) $\begin{pmatrix} c_{0,x} \\ c_{0,x} \\ c_{0,x} \\ c_{0,x} \end{pmatrix}$ 2,80 310 320 as volumica media $\begin{pmatrix} c_{0,x} \\ c_{0,x} $	azione perpendicolare	£30.k	4,0	9,0	0,5	3,5	0,5	5,0	9'0	9,0	9,0	9'0	9,0	9'0	9,0	9'0	0,6	9,0	9,0	9'0
pressions perpendicolare $\begin{pmatrix} c_{\rm SOA} & 2.0 & 2.2 & 2.2 \\ c_{\rm AA} & 1.7 & 1.8 & 2.0 \end{pmatrix}$ netà di rigidazza (in kN/mm²) $\begin{pmatrix} c_{\rm DAS} & 7 & 8 & 9 \\ c_{\rm DAS} & 4.7 & 5.4 & 6.0 \\ c_{\rm DAS} & 6.23 & 0.27 & 0.30 \\ c_{\rm DAS} & 6.23 & 0.27 & 0.30 \\ c_{\rm DAS} & 6.24 & 0.5 & 0.30 \\ c_{\rm DAS} & 6.24 & 0.25 \\ c_{\rm DAS} & 6.24 \\ c_{\rm DAS} & 6.24 \\ c_{\rm DAS} & 6.24 \\ c_{\rm DAS} &$	ompressione parallela	, cox	16	17	80	13	20	21	23	23	25	58	27	29	23	ĸ	26	29	얾	ਲ
netà di rigidazza (in kV/rm^2) ulo di elasticità medio parallella $\frac{E_{\rm Disean}}{E_{\rm Disean}}$ $\frac{7}{E_{\rm Disean}}$ $\frac{8}{E_{\rm Disean}}$ $\frac{9}{4.7}$ $\frac{9.0}{5.4}$ $\frac{9}{6.0}$ ulo di elasticità medio perpendicolare $\frac{E_{\rm Disean}}{G_{\rm nesan}}$ $\frac{4.7}{0.23}$ $\frac{9.27}{0.27}$ $\frac{9.30}{0.55}$ au volumica (in kg/m^3) as volumica (in kg/m^3) as volumica media $\frac{P_{\rm R}}{P_{\rm R}}$ $\frac{290}{350}$ $\frac{310}{370}$ $\frac{320}{380}$ as volumica media $\frac{P_{\rm R}}{P_{\rm R}}$ $\frac{290}{350}$ $\frac{370}{370}$ $\frac{380}{380}$ I valori forniti sopra per la resistenza a trazione, la resistenza a compressio utilizzando le equazioni fornite nell'appendice A. Le proprietà nel prospetto sano compatibili con un legno la cui umidità sia	ompressione perpendicolare	1080 x	2,0	2,2	2,2	23	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	8,0	8,4	8,8	9,7	10,5	13,5
netit di rigidezza (in kN/mm²) ulo di elasticità medio parallela E _{0.nean} 7 8 9 9 ulo di elasticità medio perpendicolare E _{0.nean} 0,23 0,27 0,30 ulo di elasticità medio perpendicolare E _{0.nean} 0,23 0,27 0,30 ulo di taglio medio Perpendicolare E _{0.nean} 0,44 0,5 0,55 as volumica (in kg/m²) as volumica (in kg/m²) sa volumica media P _k 350 310 320 udilizzando le equazioni formite nell'appendice A. Le proprietà nel prospetto sano competibili con un legno la cui umidità sia	aglio	13	1,7	6,	2,0	2,2	2,4	2,5	2,8	90	3,4	3,8	85 80	80 23	3,0	34	3,8	4,6	5,3	6,0
ulo di elasticità medio parallella $\frac{E_{\rm Dinean}}{E_{\rm Dinean}}$ $\frac{7}{4.7}$ $\frac{8}{5.4}$ $\frac{9}{6.0}$ ulo di elasticità parallello al 5% $\frac{E_{\rm Dinean}}{G_{\rm mean}}$ $\frac{7}{0.23}$ $\frac{8}{0.27}$ $\frac{9}{0.5}$ $\frac{9}{0.50}$ ulo di elasticità medio perpendicolare $\frac{E_{\rm Dinean}}{G_{\rm mean}}$ $\frac{9}{0.44}$ $\frac{9}{0.5}$ $\frac{9}{0.50}$ as volumica (in kg/m³). $\frac{\rho_{\rm k}}{\rho_{\rm mean}}$ $\frac{290}{350}$ $\frac{310}{370}$ $\frac{320}{380}$ as volumica media $\frac{\rho_{\rm k}}{\rho_{\rm mean}}$ $\frac{290}{350}$ $\frac{310}{370}$ $\frac{320}{380}$ is volumica media $\frac{\rho_{\rm k}}{\rho_{\rm mean}}$ $\frac{290}{350}$ $\frac{370}{370}$ $\frac{380}{380}$ Livalori forniti sopra per la resistenza a trazione, la resistenza a compressio utilizzando le equazioni formite nell'appendice A.	ropnetà di rigidezza (in kN/mm²)																			
ulo di elasticità parallelo al 5% $\frac{E_{0.06}}{G_{nean}}$ 4.7 5.4 6.0 ulo di faglio medio perpendicolare $\frac{E_{0.06}}{G_{nean}}$ 0,23 0,27 0,30 auto di faglio medio perpendicolare $\frac{E_{0.06}}{G_{nean}}$ 0,24 0,5 0,55 as volumica (in kg/m³) $\frac{\rho_k}{\rho_{mean}}$ 280 310 320 as volumica media $\frac{\rho_k}{\rho_{mean}}$ 350 370 380 udilizzando le equazioni formite nell'appendice A. Le proprietà nel prospetto sano competibili con un legno la cui umidità sia Le proprietà nel prospetto sano compatibili con un legno la cui umidità sia	odulo di elasticità medio parallela	Enmean	7	8	61	3,5	10	11	11,5	12	13	14	15	16	10	10	11	14	17	20
ulo di fegito medio perpendicolare	odulo di elasticità parallelo al 5%	F. 0.05	4,7	5,4	6,0	5,4	6,7	7,4	7,7	8,0	8,7	9,4	10,01	10,7	8,0	8,7	9,4	11,8	14,3	16,8
a volumica (in kg/m³) sa volumica media sa vazione, la resistenza a compressio utilizzando le equazion formite nell'appendice A. Le proprietà nel prospetto sano competibili con un legno la cui umidità sia	odulo di elasticità medio perpendicolare	E _{30 mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,64	69'0	0,75	0,93	1,13	1,33
sa volumica (in kg/m³) sa volumica media \$\text{\rho}_{\text{k}}\$ \ \text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{	odulo di taglio medio	Gneun	4,0	0,5	95'0	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	09'0	9'0	0,70	0,88	1,06	1,25
sa volumica media ρ_k 290 310 320 sa volumica media ρ_{meas} 350 370 380 100 100 100 100 100 100 100 100 100 1	assa volumica (in kg/m³)																			
sa volumca media Pmaer	assa volumca	Pk	280	310	320	330	340	350	370	380	400	420	440	460	530	999	290	920	700	006
I valori forniti sopra per la resistenza a trazione, la resistenza a compressio utilizzando le equazioni fornite nell'appendice A. Le proprietà nel prospetto sono compatibili con un legno la cui umidità sia	assa volumos media	Ртева	320	370	380	390	410	420	450	480	480	200	250	920	640	670	700	780	840	1 080
Le proprietà nel prospetto sono compatchii con un legno la cul umidità sia.		o treatment o	in majetan	200000000000000000000000000000000000000		in meleton	Joseph a sea	i i month	in of alaet	Man le stra	Il modula	of or nettons	è mordio e	amanaia	days alle 6	in an amy	l modulo c	i bania m	ones elec	closico
Le proprietà nel prospetto sono compatchii con un legno la cui umidità sia corrispondente ad una temperatura di 20 °C e un'umidità relativa del		opendice A	In leader	द्वाद द्वा		id i Balatis	iica a iayi	u, ii iii dan	io di diase	Mile di U.S	, II moodie	LI EI GENTA	in menun	resperimental	गर्वा ६ जाव ।	O'BIOLE B	N NINDING II	a regillorita	sund, suring	Calcula
		patibili con	un legno	a cui umic		risponden	the ad una	temperat.	ura di 20 °	Ce un'um	idità relab	va del 55%	d							

Pag. 10 di 11

5. Elenco allegati

Allegato 1	tavola grafica di restituzione delle indagini eseguite sulla copertura
Allegato 2	Documentazione fotografica

ALLEGATO 1

Tavola grafica di restituzione delle indagini eseguite sulla copertura

Comm. 940/17 Allegati

ALLEGATO 2

Documentazione fotografica

Comm. 940/17 Allegati

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06408.JPG

DSC06410.JPG

DSC06411.JPG

DSC06412.JPG

DSC06413.JPG

DSC06414.JPG

DSC06415.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06416.JPG

DSC06418.JPG

DSC06419.JPG

DSC06420.JPG

DSC06421.JPG

DSC06422.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06424.JPG

DSC06426.JPG

DSC06428.JPG

DSC06430.JPG

DSC06425.JPG

DSC06427.JPG

DSC06429.JPG

DSC06431.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06432.JPG

DSC06435.JPG

DSC06436.JPG

DSC06437.JPG

DSC06439.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06440.JPG

DSC06441.JPG

DSC06442.JPG

DSC06443.JPG

DSC06445.JPG

DSC06447.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06448.JPG

DSC06449.JPG

DSC06450.JPG

DSC06451.JPG

DSC06452.JPG

DSC06453.JPG

DSC06454.JPG

DSC06455.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06456.JPG

DSC06458.JPG

DSC06460.JPG

DSC06457.JPG

DSC06459.JPG

DSC06461.JPG

DSC06463.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06464.JPG

DSC06466.JPG

DSC06467.JPG

DSC06468.JPG

DSC06469.JPG

DSC06470.JPG

DSC06471.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06472.JPG

DSC06474.JPG

DSC06475.JPG

DSC06476.JPG

DSC06477.JPG

DSC06478.JPG

DSC06479.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06480.JPG

DSC06481.JPG

DSC06482.JPG

DSC06483.JPG

DSC06484.JPG

DSC06486.JPG

DSC06487.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06490.JPG

DSC06492.JPG

DSC06494.JPG

DSC06489.JPG

DSC06491.JPG

DSC06493.JPG

DSC06495.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06496.JPG

DSC06498.JPG

DSC06499.JPG

DSC06500.JPG

DSC06501.JPG

DSC06502.JPG

DSC06503.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06504.JPG

DSC06505.JPG

DSC06506.JPG

DSC06507.JPG

DSC06508.JPG

DSC06509.JPG

DSC06510.JPG

DSC06511.JPG

Indagini su strutture lignee di copertura - documentazione fotografica

DSC06512.JPG

DSC06514.JPG

DSC06515.JPG